
International Journal of Theoretical Physics, Vol. 35, No. 12, 1996 

Entropy Change in Axial Symmetric 
Gravitational Collapse 

Yuan-Jie Li 1 and XingYa-Tang t 

Received January 1, 1996 

We calculate the entropy changes of an imperfect-fluid gravitational collapsing 
system in the axial symmetric situation, analyzing a practical example. We 
conclude that the entropy of the collapsing system decreases at the beginning of 
the collapse and then increases very near the system's horizon. 

1. INTRODUCTION 

Many efforts have been made to explore the mechanism of the high 
entropy of black holes (Orkin et al., 1981; Carmeli, 1982; Zurek and Page, 
1984; Zhang et aL, 1986). Recently a new method has been used to analyze 
the problem (Yuan, 1994). It uses a distinguishing parameter for the entropy 
change. By using this parameter, in this paper we analyze a practical example, 
and obtain that the entropy of an axial symmetric gravitational collapsing 
system decreases at the beginning of collapse and does not increase until it 
is very near the horizon. 

2. G E N E R A L  EXPRESSION 

We assume that the stress-energy tensor of an imperfect fluid is given by 

T ab = pgab + (p  + p). u ~. u b + A T  ab (1) 

ATab = --'q Hac" Hbd" Wcd -- K( Hac" ub + Hbc" ua) " Qc + ~ Hab" (uC);c (2) 

Wob is the shear tensor: 
2 c Wab = Ua;b + Ub;a ---$gabu:c (3) 
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Qa is the thermal flux four-vector: 

Qa = T'.a + T" Ua;b" U b (4) 

Hab is the projection tensor: 

H~b = gab + UaUO (5) 

K, "q, and g are the thermal conductivity coefficient, shear viscosity coefficient, 
and volume viscosity coefficient, respectively. 

We take the comoving metric to be 

ds 2 = -(dx~ 2 + A(dxl) 2 + B(dxE) 2 + C(dx3) 2 (6) 

where A, B, and C are functions of x ~. 
The distinguishing parameter of entropy change of the collapsing sys- 

tem is 

A = T - I .  UO. (ATaO); b (7) 

The entropy increases when A > 0, decreases when A < 0, and is 
conserved when A = 0. 

For the cases k = 0 and k :/: 0, [ = "q = 0, in a spherically symmetric 
system we showed that the entropies decrease (Yuan, 1994). 

Here we consider an axial symmetric gravitational system as k :/: 0, 
=~1 = 0 .  

The dynamic axial symmetric method in slowing rotating is given by 
(Carmeli, 1982) 

2mrl + 2 dv dr - 

1 

ds 2= 1 -  pEJ dv 2 

2a(t) sinE(O) dr d~p + [r 2 

d v = d t  + d~ 

d? = {[r E + aE(t)]/Al} dr 

p2 = r 2 + a2(/) cosE(0) 

Al = r 2 + aE(t) -- 2mr 

4mra(t) sinE(O) 
p2 dv dq~ + p2 dEO 

2mraE(t) sin2(O)] 
+ aE(t) + P 2 / sinE(O) dtpE(Sa) 

(8b) 

(8c) 

(8d) 

(8e) 

Here we take m to be time independent, and a is very small. We can change 
the metric to a comoving metric as follows: 

ds 2 = - d ~  + dr 2+ pEd0E 

{ [4mr- -r2- -aE( t )  c~ } 
+ rE + aE(t) sinE(O) + r ~ -~a~-t)~oosE-~ -- 2 ~ r  a2 dEq~ 
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4mr - -  r 2 - -  a2(t) cos2(0) 2 �9 4-~- 
A = r 2 + a2(t) sin2(0) + r2 + a2(t ) c o s ~  ~ 2-mmr a sin (tl) (9b) 

B = 1 (9c) 

C = r 2 + a2(t)cos2(0) (9d) 

Utilizing field equations and the distinguishing parameter, we neglect the 
terms higher than a, and then obtain 

A = ~ - 2  - 3 sin2(0) - 4r  2 + 5r 2 sin2(0) 6mr sin2(0) 4mr 2 sin2(0) 
( r -  2m) 2 + ( r -  2m) 3 L 

aa  (10) + ~ r  -- 2m [6m sin2(0) + 12mr 2 cos2(0) - 6mr 2 sin2(0)] r4x--- ~ 

According to the relation (14) in Yuan (1994) we have 

= I ,/~ga ax' ax 2 ax 3 D, Sr 

= I r 2 ~ A l s i n ( O ) l d q ~ d O d r  (11) 

where ~ > 0, dx I dx 2 dx 3, r4xT > 0, and usually ad > 0. The sign of 
entropy change in a volume element with central mass m is only defined 
from the sign of 

A a = --2 -- 3 sin2(0) -- 4r  2 - 5r 2 sin2(0) 6mr sin2(0) 4mr 2 sin2(0) 
( r - -  2m) 2 + ( r - -  2m) 3 

+ - -  
r -- 2m 

[6m sin2(0) + 12mr 2 cos2(0) - 6mr 2 sin(0)] (12) 

(0, r) is the position of the volume element. 

3. ANALYSIS  

We can indicate the separate places where the entropy change is 0. When 
0 0 <  0 < 9 0  ~ , A > 0 ; w h e n 0 <  0 < 00, A < 0 .  When 180 ~  0 > 9 0  ~ , 
things are the same as for 180 ~ - 0, as in Fig. 1. This shows that when r is 
big enough, the angles approach 64 ~ and when r is near its horizon, the 
various angles are quite different. 

We can comment  further about (11). Consider a general gravitational 
collapsing system. We suppose that a layer of  collapsing matter encloses an 
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Fig. 1. Here m i = 103i-18MQ, i = 0, 1 . . . . .  12. 

axial symmetric mass m, and collapses from 10 ~~ m to km. The whole entropy 
of a layer is 

8'rraa 
D, ST - 

3xT 
- - - { - - 1 0 ' ~ 2 1 5  10-'o 1 + 1 [3 / ~ + 6  /k k - -  _ 

m m - 2  

- 3  ~ + 5  + m  k 4 ~ - 2 )  

+ m l n l l  + k +  k 4 ~ -  2)1 1 (13) 

We plot the (mo, ko) on which D, ST = 0 in Fig. 2. 
If m, k are larger than mo, ko, then D, ST < 0; if m, k are smaller than 

mo, ko, then D, Sr > O. 
This shows that the entropy decreases at the beginning of the collapse 

process and does not increase until the layer is very near the horizon. 
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